Marshall–Olkin exponential distribution

Probability distribution in applied statistics
Marshall–Olkin exponential
Support x [ 0 , ) b {\displaystyle x\in [0,\infty )^{b}}

In applied statistics, the Marshall–Olkin exponential distribution is any member of a certain family of continuous multivariate probability distributions with positive-valued components. It was introduced by Albert W. Marshall and Ingram Olkin.[1] One of its main uses is in reliability theory, where the Marshall–Olkin copula models the dependence between random variables subjected to external shocks. [2] [3]

Definition

Let { E B : B { 1 , 2 , , b } } {\displaystyle \{E_{B}:\varnothing \neq B\subset \{1,2,\ldots ,b\}\}} be a set of independent, exponentially distributed random variables, where E B {\displaystyle E_{B}} has mean 1 / λ B {\displaystyle 1/\lambda _{B}} . Let

T j = min { E B : j B } ,     j = 1 , , b . {\displaystyle T_{j}=\min\{E_{B}:j\in B\},\ \ j=1,\ldots ,b.}

The joint distribution of T = ( T 1 , , T b ) {\displaystyle T=(T_{1},\ldots ,T_{b})} is called the Marshall–Olkin exponential distribution with parameters { λ B , B { 1 , 2 , , b } } . {\displaystyle \{\lambda _{B},B\subset \{1,2,\ldots ,b\}\}.}

Concrete example

Suppose b = 3. Then there are seven nonempty subsets of { 1, ..., b } = { 1, 2, 3 }; hence seven different exponential random variables:

E { 1 } , E { 2 } , E { 3 } , E { 1 , 2 } , E { 1 , 3 } , E { 2 , 3 } , E { 1 , 2 , 3 } {\displaystyle E_{\{1\}},E_{\{2\}},E_{\{3\}},E_{\{1,2\}},E_{\{1,3\}},E_{\{2,3\}},E_{\{1,2,3\}}}

Then we have:

T 1 = min { E { 1 } , E { 1 , 2 } , E { 1 , 3 } , E { 1 , 2 , 3 } } T 2 = min { E { 2 } , E { 1 , 2 } , E { 2 , 3 } , E { 1 , 2 , 3 } } T 3 = min { E { 3 } , E { 1 , 3 } , E { 2 , 3 } , E { 1 , 2 , 3 } } {\displaystyle {\begin{aligned}T_{1}&=\min\{E_{\{1\}},E_{\{1,2\}},E_{\{1,3\}},E_{\{1,2,3\}}\}\\T_{2}&=\min\{E_{\{2\}},E_{\{1,2\}},E_{\{2,3\}},E_{\{1,2,3\}}\}\\T_{3}&=\min\{E_{\{3\}},E_{\{1,3\}},E_{\{2,3\}},E_{\{1,2,3\}}\}\\\end{aligned}}}

References

  1. ^ Marshall, Albert W.; Olkin, Ingram (1967), "A multivariate exponential distribution", Journal of the American Statistical Association, 62 (317): 30–49, doi:10.2307/2282907, JSTOR 2282907, MR 0215400
  2. ^ Botev, Z.; L'Ecuyer, P.; Simard, R.; Tuffin, B. (2016), "Static network reliability estimation under the Marshall-Olkin copula", ACM Transactions on Modeling and Computer Simulation, 26 (2): No.14, doi:10.1145/2775106, S2CID 16677453
  3. ^ Durante, F.; Girard, S.; Mazo, G. (2016), "Marshall--Olkin type copulas generated by a global shock", Journal of Computational and Applied Mathematics, 296: 638–648, doi:10.1016/j.cam.2015.10.022
  • Xu M, Xu S. "An Extended Stochastic Model for Quantitative Security Analysis of Networked Systems". Internet Mathematics, 2012, 8(3): 288–320.